Limit at a Point

- 1. If $\lim_{x \to a} f(x) = L$, which of the following must be true?
 - (a) f(a) = L
 - (b) f(x) = L
 - (c) $\lim_{x \to a^-} f(x) = L$
 - (d) $\lim_{x \to a^+} f(x) = L$
 - (e) $f(x) \neq L$ for all $x \neq a$.
- 2. Consider the function *f* defined by $f(x) = \begin{cases} 3x^2 4, & x < 1 \\ 2, & x = 1. \\ 6x 7, & x > 1 \end{cases}$

Which of the following are true statements about this function? (Select ALL that are correct.)

- (a) $\lim_{x \to 1} f(x)$ exists.
- (b) f(1) exists
- (c) $\lim_{x \to 1} f(x) = f(1)$

3. For which of the following graphs does $\lim_{x \to a} f(x)$ exist?

- a. IV only
- b. III and IV only
- c. II, III, and IV only
- d. I, II, III, and IV
- e. None of these

- 4. Suppose that a function y = f(x) has a jump discontinuity at an input value x = a. Which of the following statements must be true if the function f is continuous at all other input values?
 - a. f(a) must be undefined
 - b. f(a) must be defined
 - c. $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ exist and are not equal
 - d. $\lim_{x \to a^{-}} f(x) = f(a)$ or $\lim_{x \to a^{+}} f(x) = f(a)$ e. $\lim_{x \to a^{-}} f(x) = f(a)$ and $\lim_{x \to a^{+}} f(x) = f(a)$
- 5. The functions f, g, and h are defined as follows:

$$f(x) = \frac{x^2 - 1}{x - 1} \qquad g(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1\\ 1, & x = 1 \end{cases} \qquad h(x) = x + 1$$

Which of the following is true?

- I. $\lim_{x \to 1} g(x) = g(1)$
- II. $\lim_{x \to 1} f(x) = \lim_{x \to 1} g(x) = \lim_{x \to 1} h(x)$
- III. f(1) = g(1) = h(1)
 - a. I only
 - b. I and II
 - c. II only
 - d. II and III
 - e. I, II, and III