Limit at a Point

1. If $\lim _{x \rightarrow a} f(x)=L$, which of the following must be true?
(a) $f(a)=L$
(b) $f(x)=L$
(c) $\lim _{x \rightarrow a^{-}} f(x)=L$
(d) $\lim _{x \rightarrow a^{+}} f(x)=L$
(e) $f(x) \neq L$ for all $x \neq a$.
2. Consider the function f defined by $f(x)=\left\{\begin{array}{ll}3 x^{2}-4, & x<1 \\ 2, & x=1 \\ 6 x-7, & x>1\end{array}\right.$. Which of the following are true statements about this function? (Select ALL that are correct.)
(a) $\lim _{x \rightarrow 1} f(x)$ exists.
(b) $f(1)$ exists
(c) $\lim _{x \rightarrow 1} f(x)=f(1)$
3. For which of the following graphs does $\lim _{x \rightarrow a} f(x)$ exist?
I.

III.

II.

IV.

a. IV only
b. III and IV only
c. II, III, and IV only
d. I, II, III, and IV
e. None of these
4. Suppose that a function $y=f(x)$ has a jump discontinuity at an input value $x=a$. Which of the following statements must be true if the function f is continuous at all other input values?
a. $f(a)$ must be undefined
b. $f(a)$ must be defined
c. $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exist and are not equal
d. $\lim _{x \rightarrow a^{-}} f(x)=f(a)$ or $\lim _{x \rightarrow a^{+}} f(x)=f(a)$
e. $\lim _{x \rightarrow a^{-}} f(x)=f(a)$ and $\lim _{x \rightarrow a^{+}} f(x)=f(a)$
5. The functions f, g, and h are defined as follows:

$$
f(x)=\frac{x^{2}-1}{x-1} \quad g(x)=\left\{\begin{array}{ll}
\frac{x^{2}-1}{x-1}, & x \neq 1 \\
1, & x=1
\end{array} \quad h(x)=x+1\right.
$$

Which of the following is true?
I. $\lim _{x \rightarrow 1} g(x)=g(1)$
II. $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} h(x)$
III. $f(1)=g(1)=h(1)$
a. I only
b. I and II
c. II only
d. II and III
e. I, II, and III

